Module Overview
This module will focus on process integration, carbon capture technology, and their simulation. Process integration will be carried out using the standardised 'problem table' algorithm, composite curves, and energy targeting techniques, using a spreadsheet package. Various carbon capture methods and their integration to process, and power plants will be explored. This module will also develop students' ability in directed group work to synthesising and designing sustainable chemical processes. Students can learn through examples and exercises. Additionally, students will be introduced to solve these problems using the Aspen ONE software suite and similar open-source software tools.
Module Overview
Students will undertake a major research or industrially based project, applying the management methods taught in their elective management module. Students are expected to solve an industrially relevant problem using a combination of analytical, experimental, and modelling skills.
The specific content of each project will vary, but in general, the projects will contain both ‘research’ and ‘design’ components. Research will involve analytical, computational, and experimental aspects. Design work will contain specification, design, analysis, manufacture and test work. All project must be conducted with reference to environmental and sustainability issues, and account for commercial, strategic, and risk issues that would be involved in implementing their design solution within an engineering business.
Module Overview
The use of fuels as the major source of energy production is examined in some detail, with particular emphasis on combustion mechanisms and emissions formation processes from a fundamental standpoint. The barriers and opportunities to the use of alternative fuels within power generation applications are considered as well as the environmental impact of different fuel sources.
Module Overview
The aim of this module is to provide the students with the opportunity to develop an understanding of the machinery used in power generation applications. The module builds on fundamental thermodynamics, discussing the technicalities of power generation from a series of recognised energy source viewpoints.
Module Overview
This module aims to equip students with the principles and skills related to the design and integration of chemical processes, emphasising the conceptual issues that are fundamental to the creation of the process. The module is intended to provide a practical guide to chemical process design and integration. It is envisaged that it will be useful for practicing process designers and chemical engineers and applied chemists working in process development. Students will learn through examples and exercises that will do not require specialist software and can be performed on spreadsheet software. However, for efficiency, students will be encouraged to solve these problems using Aspen ONE software suite and similar open-source software tools.
Module Overview
This research methods module aims to prepare students for undertaking the research for their Independent Study. It reviews core principles of the research methods that students are likely to utilise in their research. The chosen method should form the basis of their research design, and the structure of the of Independent Study submission.
Module Overview
This module deals with current and potential future energy systems, covering resources, extraction, conversion, and end-use technologies, with emphasis on meeting regional and global energy needs in the 21st century in a sustainable manner. The course includes the review of various renewable and conventional energy production technologies, energy end-use practices and alternatives, and consumption practices in different countries. Students are given the opportunity to learn a quali-quantitative framework to aid in evaluation and analysis of energy technology system proposals in the context of engineering, political, social, economic, and environmental goals.
Module Overview
In this module, students will have the opportunity to develop and expand their fundamental knowledge of thermodynamics, and apply this to further their understanding of energy systems. It is expected that students will be able to better identify the opportunities that exist to increase the efficiency of energy machines, systems and devices. Students will have the chance to build models of mass and energy flow through existing and proposed machines. These models are then used to pinpoint the most efficient and least efficient steps of device operation.
Module Overview
The syllabus for this module can be divided into four topics:
Fundamentals
An understanding of the theory, principles and techniques used in Laser-materials Processing (LMP) are required before more advanced understanding can be achieved. This includes knowledge of the stimulated emission phenomenon, techniques used to generate laser light, laser delivery methods and a detailed understanding of optics, including thin lens theory and the ability to identify the range of optics needed for laser beam transmission and manipulation.
Safety
Students are introduced to the principles of safe use of laser sources; covering the risk classification system, the relevance of wavelength, prevention and mitigation techniques as well as a wide range of associated considerations.
Processes
Students are introduced to the importance of wavelength in laser interactions with materials. Industrial processes are classified by wavelength and detailed description of each process including modelling techniques are covered. These principles are reinforced by two laboratory sessions: one for short (UV) wavelength radiation and another for long (NIR, IR) wavelength radiation.
Novel Laser Applications
Students have the opportunity to learn how to identify and describe the potential benefits to manufacturing processes offered by the application of lasers as a result of their unique characteristics. This knowledge requires advanced application of the multidisciplinary content of a mechanical engineering degree in areas such as materials science, dynamics, thermodynamics, fluid dynamics and electronics.
Module Overview
This module aims to provide a thorough introduction to key concepts underlying the options available and the issues related to selection of sensors and actuators for control. Emphasis will be placed on systems of electro-mechanical nature but reference will be made to the much wider applicability of the techniques.