Module Overview
This module aims to apply advanced numerical methods in the simulation of real world, industrially-relevant engineering problems. This module will allow students to integrate their knowledge engineering to solve complex problems relating to structural integrity and failure, vibration, and thermal analysis. Students will devise practical solutions to these problems, gaining practical experience in analysis using an industry-standard multi-physics finite element software package. Industrially relevant case studies will be used to illustrate the techniques and modelling concepts.
Module Overview
In this module, students will have the opportunity to develop and expand their fundamental knowledge of thermodynamics, and apply this to further their understanding of energy systems. It is expected that students will be able to better identify the opportunities that exist to increase the efficiency of energy machines, systems and devices. Students will have the chance to build models of mass and energy flow through existing and proposed machines. These models are then used to pinpoint the most efficient and least efficient steps of device operation.
Module Overview
Students will undertake a major research or industrially based project, applying the management methods taught in their elective management module. Students are expected to solve an industrially relevant problem using a combination of analytical, experimental, and modelling skills.
The specific content of each project will vary, but in general, the projects will contain both ‘research’ and ‘design’ components. Research will involve analytical, computational, and experimental aspects. Design work will contain specification, design, analysis, manufacture and test work. All project must be conducted with reference to environmental and sustainability issues, and account for commercial, strategic, and risk issues that would be involved in implementing their design solution within an engineering business.
Module Overview
The use of fuels as the major source of energy production is examined in some detail, with particular emphasis on combustion mechanisms and emissions formation processes from a fundamental standpoint. The barriers and opportunities to the use of alternative fuels within power generation applications are considered as well as the environmental impact of different fuel sources.
Module Overview
The syllabus for this module can be divided into four topics:
Fundamentals
An understanding of the theory, principles and techniques used in Laser-materials Processing (LMP) are required before more advanced understanding can be achieved. This includes knowledge of the stimulated emission phenomenon, techniques used to generate laser light, laser delivery methods and a detailed understanding of optics, including thin lens theory and the ability to identify the range of optics needed for laser beam transmission and manipulation.
Safety
Students are introduced to the principles of safe use of laser sources; covering the risk classification system, the relevance of wavelength, prevention and mitigation techniques as well as a wide range of associated considerations.
Processes
Students are introduced to the importance of wavelength in laser interactions with materials. Industrial processes are classified by wavelength and detailed description of each process including modelling techniques are covered. These principles are reinforced by two laboratory sessions: one for short (UV) wavelength radiation and another for long (NIR, IR) wavelength radiation.
Novel Laser Applications
Students have the opportunity to learn how to identify and describe the potential benefits to manufacturing processes offered by the application of lasers as a result of their unique characteristics. This knowledge requires advanced application of the multidisciplinary content of a mechanical engineering degree in areas such as materials science, dynamics, thermodynamics, fluid dynamics and electronics.
Module Overview
The aim of this module is to provide an overview of the management of projects throughout the project life-cycle, from concept to beneficial operation. Business has long recognised the imperative for good, integrated processes in order to extract best value from capital investments; this course explores the benefits and imperatives for adopting a Capital Value Process for selecting the right projects to deliver required business goals, and for establishing robust Project Execution Plans for delivering world class results, as well as facilitating executive control at all stages throughout the project lifecycle. The student will compare and contrast the differing emphases and approaches to project delivery for several professional bodies and will be introduced to ten key project principles which underpin world class project performance across a broad range of industry sectors. They will also practise using several strategic planning tools to aid objective decision making and option screening. Importantly, the course will establish the imperative of good health, safety and environmental performance as a business value. It is not the intention of this module to teach project technical skills, such as planning, estimating or contract administration, but more to equip future project managers with a broad range of skills and competences so that, armed with the core project principles they might harness the skills of a diverse team of project professionals in developing and executing major projects, programmes and portfolios of the future.
Module Overview
This research methods module aims to prepare students for undertaking the research for their Independent Study. It reviews core principles of the research methods that students are likely to utilise in their research. The chosen method should form the basis of their research design, and the structure of the of Independent Study submission.
Module Overview
Embedded systems have become commonplace in our digital age and are used in every industry, from aerospace to consumer applications. Embedded devices range from everyday devices to advanced embedded systems used for complex applications.
The overall aim of this module is to introduce students to the design and analysis of computational systems that interact with physical processes. Applications of such systems include medical devices and systems, consumer electronics, toys and games, assisted living, traffic control and safety, automotive systems, process control, energy management and conservation, environmental control, aircraft control systems, communications systems, instrumentation, critical infrastructure control (electric power, water resources, and communications systems for example), robotics and distributed robotics (telepresence, telemedicine), defense systems, manufacturing, and smart structures.
This module will give students the opportunity to undertake the design and development process for embedded (dedicated) computer systems in relation to the environment in which they operate and to know how to integrate embedded hardware, software, and operating systems to meet the functional requirements of embedded applications.
Module Overview
The aim of this module is to provide the students with the opportunity to develop an understanding of the machinery used in power generation applications. The module builds on fundamental thermodynamics, discussing the technicalities of power generation from a series of recognised energy source viewpoints.
Module Overview
This module aims to provide a thorough introduction to key concepts underlying the options available and the issues related to selection of sensors and actuators for control. Emphasis will be placed on systems of electro-mechanical nature but reference will be made to the much wider applicability of the techniques.
Module Overview
This module deals with current and potential future energy systems, covering resources, extraction, conversion, and end-use technologies, with emphasis on meeting regional and global energy needs in the 21st century in a sustainable manner. The course includes the review of various renewable and conventional energy production technologies, energy end-use practices and alternatives, and consumption practices in different countries. Students are given the opportunity to learn a quali-quantitative framework to aid in evaluation and analysis of energy technology system proposals in the context of engineering, political, social, economic, and environmental goals.
Module Overview
This module builds on earlier control theory to apply and extend the previously studied controller design methods.
The focus is primarily on passenger cars and considers the primary dynamic systems such as driveline, suspension and braking systems. The module starts with the underlying vehicle system dynamics and the corresponding reduced-order system models, including as the quarter-car suspension model and the bicycle handling model. Then a number of linear and nonlinear control methods are reviewed and developed in the context of particular control objectives. For longitudinal motion, control action is centred on the engine, driveline, and brakes. For vertical motion (ride) the focus is on suspension control, including active and semi-active suspensions. Finally, handling control is based on active steering and brake-based electronic stability control.