Skip to content

BEng (Hons)
Mechanical Engineering
BEng (Hons)
Mechanical Engineering

Key Information


Campus

Brayford Pool

Typical Offer

See More

Duration

3 years

UCAS Code

H301

Campus

Brayford Pool

Typical Offer

See More

Duration

3 years

UCAS Code

H301

Academic Years

Course Overview

The BEng (Hons) Mechanical Engineering degree at Lincoln aims to produce industry-ready graduates with product design and innovative sense who are highly-skilled, creative engineers able to adapt to new challenges and deliver sustainable solutions for modern society.

The curriculum aims to support students in bridging the gap between the University and professional work by developing skills that are required by industry. The programme offers condensed yet impactful modules that are designed to arm our students with knowledge, skills, and tools to maximise their opportunities to secure a great career.

Founded in collaboration with Siemens, the University of Lincoln's School of Engineering has a core philosophy of research-led teaching. Our innovative industrial collaborations have led to a range of workplace experience opportunities.

Strong links exist between our Mechanical and Electrical programmes, enabling our students to develop the strong cross-disciplinary focus necessary for the modern engineer, and an understanding of industry perspectives.

Course Overview

The BEng (Hons) Mechanical Engineering degree at Lincoln aims to produce industry-ready graduates with product design and innovative sense who are highly-skilled, creative engineers able to adapt to new challenges and deliver sustainable solutions for modern society.

The curriculum aims to support students in bridging the gap between the University and professional work by developing skills that are required by industry. The programme offers condensed yet impactful modules that are designed to arm our students with knowledge, skills, and tools to maximise their opportunities to secure a great career.

Founded in collaboration with Siemens, the University of Lincoln's School of Engineering has a core philosophy of research-led teaching. Our innovative industrial collaborations have led to a range of workplace experience opportunities.

Strong links exist between our Mechanical and Electrical programmes, enabling our students to develop the strong cross-disciplinary focus necessary for the modern engineer, and an understanding of industry perspectives.

Why Choose Lincoln

Accredited by the Institution of Mechanical Engineers (IMechE)

Opportunities to spend an additional year in industry

Strong industry links offer opportunities for placements, mentoring, and recr

Specialist purpose-built facilities and equipment

A range of optional modules to choose from

YouTube video for Why Choose Lincoln

IMechE Formula Student

This year students from the University of Lincoln will be taking part in IMechE Formula Student for the first time as Lincoln Racing. The team is comprised of over 30 Lincoln students from a range of courses, such as engineering, maths, business, media and journalism. We have a range of experience as a team with members from racing teams and industry backgrounds. Their goal is to make the formula-style race car for July 2025 at Silverstone, but also to set solid foundations for future entries from the University.

Images from the Formula Student Event

How You Study

The Mechanical Engineering programme utilises problem- and project-based learning. We aim to narrow the gap between employers' requirements and our graduates' skills to improve employability and help facilitate their transition from higher education to work.

The first year of the degree is designed to provide a foundation in engineering theory and practice. Students are supported in their development of important technical skills, such as computer-aided design. The second and third years offer a range of specialist modules. At each stage of the course, there are opportunities to practise and develop engineering skills on real-life problems through project work.

How You Study

The Mechanical Engineering programme utilises problem- and project-based learning. We aim to narrow the gap between employers' requirements and our graduates' skills to improve employability and help facilitate their transition from higher education to work.

The first year of the degree is designed to provide a foundation in engineering theory and practice. Students are supported in their development of important technical skills, such as computer-aided design. The second and third years offer a range of specialist modules. At each stage of the course, there are opportunities to practise and develop engineering skills on real-life problems through project work.

Modules

Module Overview

All engineers must be familiar with design strategies, methods of assessing design proposals, approaches to reducing uncertainty, formal communication techniques, and the industrial and legal standards in which they fit. Mechanical Engineering students can independently learn and demonstrate the fundamentals of mechanical technical drawing and computer aided design (CAD), while Electrical Engineering students will independently learn and demonstrate the fundamentals of electrical drawing and CAD.

Electrical and Mechanical engineers will then coalesce to form interdisciplinary groups who will produce an electro-mechanical design solution which meets a practical objective and considers the commercial, economic, social and environmental implications via a broad critique of the state of the art.

Module Overview

An understanding of the basic principles and many of the important practical applications of electronic and electrical engineering is now essential to practitioners of other disciplines, especially mechanical engineers.

The aim of this module is to provide a foundation in electrical engineering and electronics without being over complicated or cluttered with too-rigorous and exhaustive mathematical elements.

Module Overview

The module can be divided into two topics:

Statics and Mechanics:

The primary aim of the study of engineering mechanics is to develop students' capacity to predict the effects of force and deformation in the course of carrying out the creative design function of engineering. As students' undertake the study of solids and forces (first statics, mechanics, then dynamics) they can build a foundation of analytical capability for the solution of a great variety of engineering problems. Modern engineering practice demands a high level of analytical capability, and the study of mechanics can help in developing this.

Dynamics:

The study of dynamics gives students the opportunity to analyse and predict the motion of particles and bodies with and without reference to the forces that cause this motion. Successful prediction requires the ability of visualise physical configurations in terms of real machines ( in addition to knowledge of physical and mathematical principles of mechanics) and actual constraints and the practical limitations which govern the behaviour of machines.

Module Overview

The selection of materials and manufacturing method is an integral part of the engineering design procedure. The purpose of this module is to introduce the fundamental properties of engineering materials through an understanding of the atomic and molecular interactions within the material. Students are introduced to the technology of manufacturing processes and how the selection of manufacturing processes are influenced by, and subsequently affect, material properties.

Module Overview

A good mathematical grounding is essential for all engineers. The theory developed in this module aims to underpin the other engineering modules studied at level one. Wherever possible, mathematical theory is taught by considering a real example, to present students the mathematical tools they might need for the science they follow. Solutions are considered by both analytical and numerical techniques.

Module Overview

The syllabus for this module can be divided into two topics:

Thermodynamics:

Thermodynamics is an essential part of engineering curricula all over the world. It is a basic science that deals with energy interactions in physical systems, and the purpose of this module is to study the relationships between heat (thermos) and work (dynamics). This module presents a range of real-world engineering applications to give students a feel for engineering practice and an intuitive understanding of the subject matter.

Fluid Mechanics:

Fluid Mechanics is the branch of applied mechanics that is concerned with the statics and dynamics of liquids and gases. The analysis of the behaviour of fluids is based upon the fundamental laws of applied mechanics, which relate to the conservation of mass-energy and the force-momentum equation. However, instead of dealing with the behaviour of individual bodies of known mass, Fluid Mechanics is concerned with the behaviour of a continuous stream of fluid. For this reason, Fluid Mechanics is studied separately to other mechanics modules. Due to the similarity of the mathematical techniques, Fluid Mechanics are studied with Thermodynamics.

Module Overview

Applied Thermodynamics:

Thermodynamics is the science that deals with energy interactions in physical systems. The purpose of this module is to build upon the basic principles that were introduced in Thermofluid 1: Fundamental, and then apply this knowledge to real engineering problems.

Heat Transfer:

Almost every branch of science and engineering includes some kind of heat transfer problem, and there is a need for engineers to have some background in this area. The aim of this module is to provide an introduction to the basic principles and practical applications of conduction, convection and radiation heat transfer. The process of heat transfer is often accomplished by a flowing fluid, and so this module seeks to develop further the Fluid Mechanics covered in Thermofluids at level 1, in order that students can develop their understanding to the point that real world problems can be addressed.

Module Overview

The aim of this module is to consolidate and build on the ideas and skills introduced in level one. Students have the opportunity to develop their ability to model dynamic systems with particular reference to vibration analysis in practical engineering applications.

Module Overview

The aim of this module is to provide students with a firm grounding in Classical Control methods, which will enable them to work with systems and control engineers, and prepare students on the control stream for advanced topics in the level three and four modules.

Students will be introduced to Control in relation to engineering systems, and in particular to develop methods of modelling the control of processes. Techniques are explored with particular reference to common practical engineering problems and their solutions, and the application of SIMULINK in this process.

Module Overview

The purpose of this programme of mathematical study is to give students the opportunity to become more competent in calculations using a range of mathematical tools. The content builds upon that delivered in the first year, and gives students the opportunity to extend their analytical skills by introducing more advanced topics that may form part of the modern engineers skill set.

Module Overview

Students will be introduced to electrical machines and power systems and their practical applications, supported by practical analysis/synthesis methods.

This ability is fundamental for the students with mechanical engineering background, if they are to be able to handle electromechanical problems encountered in real life situations.

Students will further have the opportunity to explore a general methodology for the calculation of electromechanical energy conversion. Students can obtain an appreciation of the features and characteristics of different types of electromechanical machines and drives and their applications.

Module Overview

This module aims to provide an introduction to the subject of industrial engineering.

Industrial engineering is a branch of engineering dealing with the optimisation of complex processes or systems. It is concerned with the development, improvement, implementation and evaluation of integrated systems of people, economic resources, knowledge, information, equipment, energy, materials, analysis and synthesis, as well as the mathematical, physical and social sciences together with the principles and methods of engineering design to specify, predict, and evaluate the results to be obtained from such systems or processes. The various topics include management science, cost and value engineering, business economics and finance, engineering management, supply chain management, operations research, health and safety engineering, operation management.

Module Overview

The content of this module aims to deepen a students’ understanding of engineering in practical applications. Students will have the opportunity to investigate the design process for mechanical, electrical or control components/systems and undertake analysis of the same.

These two strands of the module are brought together in a design project, which will be set by a professional engineering organisation. This major project will give students the opportunity to extend their creative design skills and obtain practical experience of the process of creating sound conceptual solutions through to real design problems within an industrial context. Students can build confidence and gain experience through working within a team with practicing engineers from industry.

Module Overview

This programme of study will extend the ideas and skills introduced at Level 1. Students have the opportunity to learn how to carry out strength and deflection analyses for a variety of simple load cases and structures. Students have the opportunity to understand the simplifications used in such analyses. This course demonstrates the role of stress analysis and failure prediction in the design environment.

Module Overview

The Placement Year constitutes a work placement during an academic year, typically between Levels 2 and Level 3, though it may take place between levels 3 and 4 of an MEng programme. Students wishing to undertake the work placement year must successfully complete Level 2 (and 3 if applicable) of their programme.

The Placement Year aims to give students a continuous experience of full-time work within an organisation. It should be a three-way co-operative activity between employer, student, and University. Work placements enable students to experience at first hand the daily workings of an organisation while setting that experience in the broader context of their studies.

Module Overview

This module provides an opportunity for students to spend a term in the second year studying at one of the University’s partner institutions abroad. Students wishing to take part in this must submit an application to the School discuss why they wish to participate in a study period abroad. A limited number of places will be available each year, and participation is subject to the School's approval.

Module Overview

The selection of materials and manufacturing method is an integral part of the design and manufacturing procedure for producing parts and products. The purpose of this module is to provide students with the opportunity to learn how to select appropriate materials, processing methods and manufacturing systems to produce components and products, both existing and novel. The student is introduced to contemporary manufacturing processes and systems in an effort to select effective and efficient manufacturing processes and systems.

Module Overview

The individual project aims to provide students with a learning experience that enables them to carry out independent research, and to integrate many of the subjects they have studied throughout their degree. Students are expected to plan, research and execute their task while developing skills in critical judgement, independent work and engineering competence. Students have the opportunity to gain experience in presenting and reporting a major piece of engineering work, of immediate engineering value, at a level appropriate for an honours degree student.

Module Overview

The purpose of this module is to enable students to deepen their understanding of the key engineering materials with respect to material characteristics, their internal aspects, mechanical as well as the physical properties. This module aims to consolidate students' learning from other modules within the areas of engineering science, materials, manufacturing technology and manufacturing processes.

Module Overview

The aim of this module is to give students the opportunity to experience a real engineering design situation as part of a group. Students have the opportunity to gain an understanding of strategic, operational, environmental and ethical issues related to new product design and development through a series of lectures covering an appreciation of market and societal dynamics and its effect on the design of new products. This module provides students with the opportunity to understand the tools and techniques available to facilitate sustainable product design and provide knowledge of the product design processes that can reduce environmental impacts and promote sustainable practices.

Module Overview

The aim of this module is to provide students with the opportunity to learn the background into combustion theory. Students will be introduced to traditional and renewable fuels, their combustion and utilisation and the resulting environmental impacts. Combustion applications for energy production will be introduced along with the politics revolving around these energy applications. The module will also consider energy policy in terms of usage.

Module Overview

The purpose of this module is to introduce the full Navier-Stokes equations and give the physical significance of each term in the equations. Students are introduced to CFD techniques appropriate for practical engineering applications, (the finite volume method), and they have the opportunity to gain practical, hands-on experience of commercial CFD packages. This module offers students the opportunity to model industrial fluid dynamics and heat transfer problems.

Module Overview

The aim of this module is to provide students with an understanding of the machines used in power generation applications, with a main focus on the principles of operation of machines used in base load power generation (gas turbines), but all rotating machines in power generation are considered. Students may then develop a methodology for measuring the impact of machines from energy and materials usage, standpoints, and to better understand where opportunities exist to increase the efficiency of energy machines, systems and devices.

Students will have the opportunity to build models of mass and energy flow through existing and proposed machines. These models are then used to pinpoint the most efficient and least efficient steps of device operation. This syllabus can be divided into two topics —

Fundamentals of Machines in Power and Energy:

The module begins with the theory of gas turbines, based on fundamental thermodynamic and fluid mechanic analyses and introduces methods for improving efficiencies and increasing specific work outputs.

Energy Systems Analysis:

Students may strengthen and expand their fundamental knowledge of thermodynamics, and apply this to develop a better understanding of energy systems and machine systems.

Module Overview

The purpose of this module is to introduce students to the theory and practice of the finite element method, with applications in stress analysis, heat transfer, and general field problems in order to complement other modules in these subjects. Students have the opportunity to learn of the capabilities and limitations of the finite element method and the practical problems involved in successfully modelling engineering structures and components.

Module Overview

The aim of this module is to enable students to gain knowledge and understanding of the principles and other key elements in robotics, its interdisciplinary nature and its role and applications in automation.

The module starts with the history and definition of robotics and its role in automation with examples. The module continues by studying a number of issues related to classifying, modelling and operating robots, followed by an important aspect of the robotics interdisciplinary nature i.e. its control and use of sensors and interpretation of sensory information as well as vision systems. Students will also have the opportunity to be introduced to the topics of networked operation and teleoperation, as well as robot programming

Module Overview

The aim of this module is to introduce students to theory and methodology of advanced techniques relevant to engineering systems, in order to design and implement filters and systems.

System identification is a general term to describe mathematical tools and algorithms that build dynamic models from measured data. A dynamic model in this context is a mathematical description of the dynamic behaviour of a system or process in either the time or frequency domain. Students are given the opportunity to investigate methods by which they can perform useful operations on signals in either discrete or time-varying measurement.

Module Overview

In control engineering, a state-space representation is a mathematical model of a physical system as a set of input, output and state variables. Students have the opportunity to explore different methods of resolving the control variables in order to analyse systems in a compact and relevant way.


† Some courses may offer optional modules. The availability of optional modules may vary from year to year and will be subject to minimum student numbers being achieved. This means that the availability of specific optional modules cannot be guaranteed. Optional module selection may also be affected by staff availability.

Modules

Module Overview

All engineers must be familiar with design strategies, methods of assessing design proposals, approaches to reducing uncertainty, formal communication techniques, and the industrial and legal standards in which they fit. Mechanical Engineering students can independently learn and demonstrate the fundamentals of mechanical technical drawing and computer aided design (CAD), while Electrical Engineering students will independently learn and demonstrate the fundamentals of electrical drawing and CAD.

Electrical and Mechanical engineers will then coalesce to form interdisciplinary groups who will produce an electro-mechanical design solution which meets a practical objective and considers the commercial, economic, social and environmental implications via a broad critique of the state of the art.

Module Overview

An understanding of the basic principles and many of the important practical applications of electronic and electrical engineering is now essential to practitioners of other disciplines, especially mechanical engineers.

The aim of this module is to provide a foundation in electrical engineering and electronics without being over complicated or cluttered with too-rigorous and exhaustive mathematical elements.

Module Overview

The module can be divided into two topics:

Statics and Mechanics:

The primary aim of the study of engineering mechanics is to develop students' capacity to predict the effects of force and deformation in the course of carrying out the creative design function of engineering. As students' undertake the study of solids and forces (first statics, mechanics, then dynamics) they can build a foundation of analytical capability for the solution of a great variety of engineering problems. Modern engineering practice demands a high level of analytical capability, and the study of mechanics can help in developing this.

Dynamics:

The study of dynamics gives students the opportunity to analyse and predict the motion of particles and bodies with and without reference to the forces that cause this motion. Successful prediction requires the ability of visualise physical configurations in terms of real machines ( in addition to knowledge of physical and mathematical principles of mechanics) and actual constraints and the practical limitations which govern the behaviour of machines.

Module Overview

The selection of materials and manufacturing method is an integral part of the engineering design procedure. The purpose of this module is to introduce the fundamental properties of engineering materials through an understanding of the atomic and molecular interactions within the material. Students are introduced to the technology of manufacturing processes and how the selection of manufacturing processes are influenced by, and subsequently affect, material properties.

Module Overview

A good mathematical grounding is essential for all engineers. The theory developed in this module aims to underpin the other engineering modules studied at level one. Wherever possible, mathematical theory is taught by considering a real example, to present students the mathematical tools they might need for the science they follow. Solutions are considered by both analytical and numerical techniques.

Module Overview

The syllabus for this module can be divided into two topics:

Thermodynamics:

Thermodynamics is an essential part of engineering curricula all over the world. It is a basic science that deals with energy interactions in physical systems, and the purpose of this module is to study the relationships between heat (thermos) and work (dynamics). This module presents a range of real-world engineering applications to give students a feel for engineering practice and an intuitive understanding of the subject matter.

Fluid Mechanics:

Fluid Mechanics is the branch of applied mechanics that is concerned with the statics and dynamics of liquids and gases. The analysis of the behaviour of fluids is based upon the fundamental laws of applied mechanics, which relate to the conservation of mass-energy and the force-momentum equation. However, instead of dealing with the behaviour of individual bodies of known mass, Fluid Mechanics is concerned with the behaviour of a continuous stream of fluid. For this reason, Fluid Mechanics is studied separately to other mechanics modules. Due to the similarity of the mathematical techniques, Fluid Mechanics are studied with Thermodynamics.

Module Overview

Applied Thermodynamics:

Thermodynamics is the science that deals with energy interactions in physical systems. The purpose of this module is to build upon the basic principles that were introduced in Thermofluid 1: Fundamental, and then apply this knowledge to real engineering problems.

Heat Transfer:

Almost every branch of science and engineering includes some kind of heat transfer problem, and there is a need for engineers to have some background in this area. The aim of this module is to provide an introduction to the basic principles and practical applications of conduction, convection and radiation heat transfer. The process of heat transfer is often accomplished by a flowing fluid, and so this module seeks to develop further the Fluid Mechanics covered in Thermofluids at level 1, in order that students can develop their understanding to the point that real world problems can be addressed.

Module Overview

The aim of this module is to consolidate and build on the ideas and skills introduced in level one. Students have the opportunity to develop their ability to model dynamic systems with particular reference to vibration analysis in practical engineering applications.

Module Overview

The aim of this module is to provide students with a firm grounding in Classical Control methods, which will enable them to work with systems and control engineers, and prepare students on the control stream for advanced topics in the level three and four modules.

Students will be introduced to Control in relation to engineering systems, and in particular to develop methods of modelling the control of processes. Techniques are explored with particular reference to common practical engineering problems and their solutions, and the application of SIMULINK in this process.

Module Overview

The purpose of this programme of mathematical study is to give students the opportunity to become more competent in calculations using a range of mathematical tools. The content builds upon that delivered in the first year, and gives students the opportunity to extend their analytical skills by introducing more advanced topics that may form part of the modern engineers skill set.

Module Overview

Students will be introduced to electrical machines and power systems and their practical applications, supported by practical analysis/synthesis methods.

This ability is fundamental for the students with mechanical engineering background, if they are to be able to handle electromechanical problems encountered in real life situations.

Students will further have the opportunity to explore a general methodology for the calculation of electromechanical energy conversion. Students can obtain an appreciation of the features and characteristics of different types of electromechanical machines and drives and their applications.

Module Overview

This module aims to provide an introduction to the subject of industrial engineering.

Industrial engineering is a branch of engineering dealing with the optimisation of complex processes or systems. It is concerned with the development, improvement, implementation and evaluation of integrated systems of people, economic resources, knowledge, information, equipment, energy, materials, analysis and synthesis, as well as the mathematical, physical and social sciences together with the principles and methods of engineering design to specify, predict, and evaluate the results to be obtained from such systems or processes. The various topics include management science, cost and value engineering, business economics and finance, engineering management, supply chain management, operations research, health and safety engineering, operation management.

Module Overview

The content of this module aims to deepen a students’ understanding of engineering in practical applications. Students will have the opportunity to investigate the design process for mechanical, electrical or control components/systems and undertake analysis of the same.

These two strands of the module are brought together in a design project, which will be set by a professional engineering organisation. This major project will give students the opportunity to extend their creative design skills and obtain practical experience of the process of creating sound conceptual solutions through to real design problems within an industrial context. Students can build confidence and gain experience through working within a team with practicing engineers from industry.

Module Overview

This programme of study will extend the ideas and skills introduced at Level 1. Students have the opportunity to learn how to carry out strength and deflection analyses for a variety of simple load cases and structures. Students have the opportunity to understand the simplifications used in such analyses. This course demonstrates the role of stress analysis and failure prediction in the design environment.

Module Overview

The Placement Year constitutes a work placement during an academic year, typically between Levels 2 and Level 3, though it may take place between levels 3 and 4 of an MEng programme. Students wishing to undertake the work placement year must successfully complete Level 2 (and 3 if applicable) of their programme.

The Placement Year aims to give students a continuous experience of full-time work within an organisation. It should be a three-way co-operative activity between employer, student, and University. Work placements enable students to experience at first hand the daily workings of an organisation while setting that experience in the broader context of their studies.

Module Overview

This module provides an opportunity for students to spend a term in the second year studying at one of the University’s partner institutions abroad. Students wishing to take part in this must submit an application to the School discuss why they wish to participate in a study period abroad. A limited number of places will be available each year, and participation is subject to the School's approval.

Module Overview

The selection of materials and manufacturing method is an integral part of the design and manufacturing procedure for producing parts and products. The purpose of this module is to provide students with the opportunity to learn how to select appropriate materials, processing methods and manufacturing systems to produce components and products, both existing and novel. The student is introduced to contemporary manufacturing processes and systems in an effort to select effective and efficient manufacturing processes and systems.

Module Overview

The individual project aims to provide students with a learning experience that enables them to carry out independent research, and to integrate many of the subjects they have studied throughout their degree. Students are expected to plan, research and execute their task while developing skills in critical judgement, independent work and engineering competence. Students have the opportunity to gain experience in presenting and reporting a major piece of engineering work, of immediate engineering value, at a level appropriate for an honours degree student.

Module Overview

The purpose of this module is to enable students to deepen their understanding of the key engineering materials with respect to material characteristics, their internal aspects, mechanical as well as the physical properties. This module aims to consolidate students' learning from other modules within the areas of engineering science, materials, manufacturing technology and manufacturing processes.

Module Overview

The aim of this module is to give students the opportunity to experience a real engineering design situation as part of a group. Students have the opportunity to gain an understanding of strategic, operational, environmental and ethical issues related to new product design and development through a series of lectures covering an appreciation of market and societal dynamics and its effect on the design of new products. This module provides students with the opportunity to understand the tools and techniques available to facilitate sustainable product design and provide knowledge of the product design processes that can reduce environmental impacts and promote sustainable practices.

Module Overview

The aim of this module is to provide students with the opportunity to learn the background into combustion theory. Students will be introduced to traditional and renewable fuels, their combustion and utilisation and the resulting environmental impacts. Combustion applications for energy production will be introduced along with the politics revolving around these energy applications. The module will also consider energy policy in terms of usage.

Module Overview

The purpose of this module is to introduce the full Navier-Stokes equations and give the physical significance of each term in the equations. Students are introduced to CFD techniques appropriate for practical engineering applications, (the finite volume method), and they have the opportunity to gain practical, hands-on experience of commercial CFD packages. This module offers students the opportunity to model industrial fluid dynamics and heat transfer problems.

Module Overview

The aim of this module is to provide students with an understanding of the machines used in power generation applications, with a main focus on the principles of operation of machines used in base load power generation (gas turbines), but all rotating machines in power generation are considered. Students may then develop a methodology for measuring the impact of machines from energy and materials usage, standpoints, and to better understand where opportunities exist to increase the efficiency of energy machines, systems and devices.

Students will have the opportunity to build models of mass and energy flow through existing and proposed machines. These models are then used to pinpoint the most efficient and least efficient steps of device operation. This syllabus can be divided into two topics —

Fundamentals of Machines in Power and Energy:

The module begins with the theory of gas turbines, based on fundamental thermodynamic and fluid mechanic analyses and introduces methods for improving efficiencies and increasing specific work outputs.

Energy Systems Analysis:

Students may strengthen and expand their fundamental knowledge of thermodynamics, and apply this to develop a better understanding of energy systems and machine systems.

Module Overview

The purpose of this module is to introduce students to the theory and practice of the finite element method, with applications in stress analysis, heat transfer, and general field problems in order to complement other modules in these subjects. Students have the opportunity to learn of the capabilities and limitations of the finite element method and the practical problems involved in successfully modelling engineering structures and components.

Module Overview

The aim of this module is to enable students to gain knowledge and understanding of the principles and other key elements in robotics, its interdisciplinary nature and its role and applications in automation.

The module starts with the history and definition of robotics and its role in automation with examples. The module continues by studying a number of issues related to classifying, modelling and operating robots, followed by an important aspect of the robotics interdisciplinary nature i.e. its control and use of sensors and interpretation of sensory information as well as vision systems. Students will also have the opportunity to be introduced to the topics of networked operation and teleoperation, as well as robot programming

Module Overview

The aim of this module is to introduce students to theory and methodology of advanced techniques relevant to engineering systems, in order to design and implement filters and systems.

System identification is a general term to describe mathematical tools and algorithms that build dynamic models from measured data. A dynamic model in this context is a mathematical description of the dynamic behaviour of a system or process in either the time or frequency domain. Students are given the opportunity to investigate methods by which they can perform useful operations on signals in either discrete or time-varying measurement.

Module Overview

In control engineering, a state-space representation is a mathematical model of a physical system as a set of input, output and state variables. Students have the opportunity to explore different methods of resolving the control variables in order to analyse systems in a compact and relevant way.


† Some courses may offer optional modules. The availability of optional modules may vary from year to year and will be subject to minimum student numbers being achieved. This means that the availability of specific optional modules cannot be guaranteed. Optional module selection may also be affected by staff availability.

What You Need to Know

We want you to have all the information you need to make an informed decision on where and what you want to study. In addition to the information provided on this course page, our What You Need to Know page offers explanations on key topics including programme validation/revalidation, additional costs, and contact hours.

What You Need to Know

We want you to have all the information you need to make an informed decision on where and what you want to study. In addition to the information provided on this course page, our What You Need to Know page offers explanations on key topics including programme validation/revalidation, additional costs, and contact hours.

How you are assessed

Assessment on the programme is designed to measure and assess engineering technical and analytical skills as well as professional soft skills including oral and written communication, team working, long-life learning, problem-solving, project management, and planning and organisation.

In addition to traditional exams, coursework assignments are used in a number of modules where students are required to work on their own or in small groups. They are designed to enable students to develop and show their understanding of the module content. Oral presentations are often included as part of coursework to provide opportunities for developing essential communication skills. The programme also includes time constrained assessments (TCAs).

Students are expected to complete an individual project in their final year of the degree course, providing an excellent opportunity to pull together every aspect of their development during the course.

How you are assessed

Assessment on the programme is designed to measure and assess engineering technical and analytical skills as well as professional soft skills including oral and written communication, team working, long-life learning, problem-solving, project management, and planning and organisation.

In addition to traditional exams, coursework assignments are used in a number of modules where students are required to work on their own or in small groups. They are designed to enable students to develop and show their understanding of the module content. Oral presentations are often included as part of coursework to provide opportunities for developing essential communication skills. The programme also includes time constrained assessments (TCAs).

Students are expected to complete an individual project in their final year of the degree course, providing an excellent opportunity to pull together every aspect of their development during the course.

Accreditation

This programme is accredited by the Institution of Mechanical Engineers (IMechE). The accredited BEng (Hons) will meet, in part, the exemplifying academic benchmark requirements for registration as a Chartered Engineer and Students will need to complete an approved format of further learning pursuant to the requirements of UK-SPEC.

Institute of Mechanical Engineers logo

Placements

Full-time students have the option of a year-long professional practice placement after the second year, providing real-world experience. A Placement Year Fee is payable to the University of Lincoln during this year for students joining in 2025/26 and beyond. Students are expected to cover their own travel, accommodation, and living costs. 

I thought it was brilliant that the degree modules focused not only on academic rigor, but the way they were delivered to develop of soft skills through things like group work on real industrial problems. This meant that when looking at graduate placements and schemes, I could confidently demonstrate key competencies that were required.

Academic Expertise and Industry Links

Our academic team brings together a rich array of research experience, including staff with specialisms in diagnostics and prognostics, renewables, modelling of dynamic systems, nanomaterials, and applications of lasers. They secure grants for major UK and European research funders and deliver research, development, and consultancy for industrial partners, as well as being part of international research collaborations. Students have the opportunity to engage in this research through research-led teaching and project work.

Founded in collaboration with Siemens, the University of Lincoln’s School of Engineering has a core philosophy of research-led teaching. Our innovative industrial collaborations have led to a rich programme of work experience opportunities, including at Siemens Energy in Lincoln.

What Can I Do with a Mechanical Engineering Degree?

Professional engineers are in demand in the UK and overseas. Graduates may pursue a variety of career paths in areas such as control systems, power and energy, and mechanical and materials engineering. The University’s strong industry links give Lincoln graduates enhanced opportunities for placements, mentoring, and recruitment, including at Siemens Energy in Lincoln. Other graduate destinations include Rolls-Royce, Qinetiq, JCB, and Jaguar Landrover.

Entry Requirements 2025-26

United Kingdom

104 UCAS Tariff points from a minimum of 2 A Levels to include 40 points in Maths.

BTEC Extended Diploma in Engineering: Distinction, Merit, Merit.

T Level in Engineering: Merit

Access to Higher Education Diploma: 45 Level 3 credits with a minimum of 104 UCAS Tariff points.

International Baccalaureate: 28 points overall to include a Higher Level 5 in Maths.

GCSE's: Minimum of three at grade 4 or above, which must include English and Maths. Equivalent Level 2 qualifications may also be considered.


The University accepts a wide range of qualifications as the basis for entry and do accept a combination of qualifications which may include A Levels, BTECs, EPQ etc.

We may also consider applicants with extensive and relevant work experience and will give special individual consideration to those who do not meet the standard entry qualifications.

International

Non UK Qualifications:

If you have studied outside of the UK, and are unsure whether your qualification meets the above requirements, please visit our country pages https://www.lincoln.ac.uk/studywithus/internationalstudents/entryrequirementsandyourcountry/ for information on equivalent qualifications.

EU and Overseas students will be required to demonstrate English language proficiency equivalent to IELTS 6.0 overall, with a minimum of 5.5 in each element. For information regarding other English language qualifications we accept, please visit the English Requirements page https://www.lincoln.ac.uk/studywithus/internationalstudents/englishlanguagerequirementsandsupport/englishlanguagerequirements/

If you do not meet the above IELTS requirements, you may be able to take part in one of our Pre-sessional English and Academic Study Skills courses.

https://www.lincoln.ac.uk/studywithus/internationalstudents/englishlanguagerequirementsandsupport/pre-sessionalenglishandacademicstudyskills/

For applicants who do not meet our standard entry requirements, our Science Foundation Year can provide an alternative route of entry onto our full degree programmes:
https://www.lincoln.ac.uk/course/sfysfyub/

If you would like further information about entry requirements, or would like to discuss whether the qualifications you are currently studying are acceptable, please contact the Admissions team on 01522 886097, or email admissions@lincoln.ac.uk

Contextual Offers

At Lincoln, we recognise that not everybody has had the same advice and support to help them get to higher education. Contextual offers are one of the ways we remove the barriers to higher education, ensuring that we have fair access for all students regardless of background and personal experiences. For more information, including eligibility criteria, visit our Offer Guide pages. If you are applying to a course that has any subject specific requirements, these will still need to be achieved as part of the standard entry criteria.

Entry Requirements 2026-27

United Kingdom

96 to 112 UCAS Tariff points.

This must be achieved from a minimum of 2 A Levels or equivalent Level 3 qualifications, to include 40 points from Maths. For example:

A Level: BCD to BBC to include a Grade B in Maths

BTEC Extended Diploma in Engineering : DMM

(Please include units on application)

T Level in Engineering : Merit Overall


Access to Higher Education Diploma: 96 to 112 UCAS points to be achieved from 45 Level 3 credits, including 40 points from 15 credits in Maths.

International Baccalaureate: 28 points overall to include a Higher Level in Maths.

GCSE's: Minimum of three at grade 4 or above, which must include English and Maths. Equivalent Level 2 qualifications may be considered.

The University accepts a wide range of qualifications as the basis for entry and do accept a combination of qualifications which may include A Levels, BTECs, Extended Project Qualification (EPQ).

We may also consider applicants with extensive and relevant work experience and will give special individual consideration to those who do not meet the standard entry qualifications.

International

Non UK Qualifications:

If you have studied outside of the UK, and are unsure whether your qualification meets the above requirements, please visit our country pages

https://www.lincoln.ac.uk/studywithus/internationalstudents/entryrequirementsandyourcountry/ for information on equivalent qualifications.

EU and Overseas students will be required to demonstrate English language proficiency equivalent to IELTS 6.0 overall, with a minimum of 5.5 in each element. For information regarding other English language qualifications we accept, please visit the English Requirements page

https://www.lincoln.ac.uk/studywithus/internationalstudents/englishlanguagerequirementsandsupport/englishlanguagerequirements/

If you do not meet the above IELTS requirements, you may be able to take part in one of our Pre-sessional English and Academic Study Skills courses.

https://www.lincoln.ac.uk/studywithus/internationalstudents/englishlanguagerequirementsandsupport/pre-sessionalenglishandacademicstudyskills/

If you would like further information about entry requirements, or would like to discuss whether the qualifications you are currently studying are acceptable, please contact the Admissions team on 01522 886097, or email admissions@lincoln.ac.uk

Contextual Offers

At Lincoln, we recognise that not everybody has had the same advice and support to help them get to higher education. Contextual offers are one of the ways we remove the barriers to higher education, ensuring that we have fair access for all students regardless of background and personal experiences. For more information, including eligibility criteria, visit our Offer Guide pages. If you are applying to a course that has any subject specific requirements, these will still need to be achieved as part of the standard entry criteria.

Fees and Scholarships

Going to university is a life-changing step and it's important to understand the costs involved and the funding options available before you start. A full breakdown of the fees associated with this programme can be found on our course fees pages.

Course Fees

For eligible undergraduate students going to university for the first time, scholarships and bursaries are available to help cover costs. To help support students from outside of the UK, we are also delighted to offer a number of international scholarships which range from £1,000 up to the value of 50 per cent of tuition fees. For full details and information about eligibility, visit our scholarships and bursaries pages.

Fees and Scholarships

Going to university is a life-changing step and it's important to understand the costs involved and the funding options available before you start. A full breakdown of the fees associated with this programme can be found on our course fees pages.

Course Fees

For eligible undergraduate students going to university for the first time, scholarships and bursaries are available to help cover costs. To help support students from outside of the UK, we are also delighted to offer a number of international scholarships which range from £1,000 up to the value of 50 per cent of tuition fees. For full details and information about eligibility, visit our scholarships and bursaries pages.

Find out More by Visiting Us

The best way to find out what it is really like to live and learn at Lincoln is to visit us in person. We offer a range of opportunities across the year to help you to get a real feel for what it might be like to study here.

Three students walking together on campus in the sunshine
The University intends to provide its courses as outlined in these pages, although the University may make changes in accordance with the Student Admissions Terms and Conditions.